

PROPIEDADES DE LOS ACEROS INOXIDABLES MAS UTILIZADOS

			COMPOSICIÓN QUÍMINA %														CARACTERÍSTICAS MECÁNICAS				
AISI	WerKstoff No.	C Max	Ni	Cr	Fe	Ti	Мо	Cu	Со	Al	Si	Mn	S Max	P Max	Varios	Otros	Carga de Rotura Mpa-min.	Límite Elástico Mpa-min	Alarga % Min.	Dureza (HB) Max.	Los grados 304H, 316H, 321H y 347H son, en cuanto a su composición química, idénticos a los 304, 316, 321 y 347, con la excepción de que el contenido de carbono está entre 0,04 y 0,10%. (A) A.S.T.M A312
AISI 304	1.4301	0,08	8-11	18-20	Resto						<=0,75	<=2.00	0,03	0,04		,	515	205	35	183	Resistencia satisfactoria en las aguas dulces y en la atmósfera. Muy buen comportamiento mecánico a muy bajas temperaturas.
AISI 304 L	1.4306	0,03	8-11	18-20	Resto						<=0,75	<=2.00	0,03	0,04			485	170	35	183	Excelente resitencia a la corrosión de los ácidos nítricos 36 B, y de las mezclas Sulfonítricas hasta 70 C. Resistencia a la corrosión intercristalina. Su bajo contenido en carbono evita los tratamientos térmicos después de la soldadura.
AISI 316	1.4401	0,08	11-14	16-18	Resto		2-3				<=0,75	<=2.00	0,03	0,04			515	205	35	217	Resite a los ácidos nítricos 36 B, y los fosfóricos por debajo de 70 C.
AISI 316 L	1.4404	0,03	11-14	16-18	Resto		2-3				<=0,75	<=2.00	0,03	0,04			485	170	35	217	Resistencia a la corrosión netamente superior a la del AISI- 316, en particular en medios susceptibles de atacar por picado (cloruro), resistente a la corrosión intercristalina. Su muy bajo contenido en carbono evita tratamientos térmicos después de la soldadura.
AISI 316 TI	1.4571	0,08	11-14	16-18	Resto	>=5xC <=0,60	2-3				<=0,75	<=2.00	0,03	0,04		•	515	205	35	217	Resiste los ácidos nítricos 30 B, y los fosfóricos por debajo de 70 C. Estabilizado con Titanio, lo que evita tratamientos térmicos después de la soldadura.
AISI 321	1.4541	0,08	9-13	17-20	Resto	>=5xC <=0,60	4				<=0,75	<=2.00	0,03	0,04			515	205	35	183	Resiste bastante bien a la oxidación y a la corrosión. En determinadas circunstancias, puede actuar como acero refractario.
AISI 347	1.4550	0,15	9-13	17-20	Resto						<=0,75	<=2.00	0,03	0,04	Nb +Ta e 10xC d 1,0		515	205	35	201	Mismas características que el AISI- 321, pero estabilizado con niobio.
AISI 309	1.4828	0,15	9-13	22.24	Resto						<=0,75	<=2.00	0,03	0,04			515	205	35	217	Ofrece mejor resistencia a la corrosión que el 304 debido a Sus mayores porcentajes en Cromo y Níquel. Esta aleación es usada para piezas de homos, contenedores de alta temperatura, cordones de soldadura.
AISI 310	1.4841	0,15	19-22	24-26	Resto						<=0,75	<=2.00	0,03	0,04			515	205	35	217	Cromo-Níquel acero con un excelente resistencia a la oxidación en ambientes carburados y reducidos. El Inoxidable 310 tiene una excelente resistencia a las sales templadas, neutrales, cianhídricas y sales de alta velocidad.
Alloy 904 L	1.4539	0.020	23-28	20-21			4-5	1-2			1,00	2,00	0,035	0,045		N:0,05 0,10	490	200	35	293	Gran resistencia a la oxidación, a la corrosión por tensión y a la corrosión por cristalización. Excelente resistencia a los ácidos reductores moderadamente agresivos.
Manel 400	2.436/61	0,30	>=63		<=2,5			28-34		<=0,50	<=0,50	<=2.00	0,02				482	192	35	270	Este material destaca por su dureza sobre una gran variedad de temperaturas y su excelente resistencia en muchos ambientes corrosivos. El Monel 400 sólo se puede endurecer en frío.
Incoloy 825	2.4858	0,05	38-46	195-235	Resto	0,16-1,2	25-35	1,5-3,0			<=0,50	<=1,0					586	240	40	270	Gran resitencia en diferentes ambientes corrosivos, así como a picarse, corrosión de grieta, corrosión intergranular y a agrietarse por corrosión de tensión. Buenas características mecánicas para temperaturas moderadas y altas.
Hastelloy C	2.4818	0,08	Resto	145-165	4-7		15-17		<=2 ⁵		<=1,0	<=1,0	0,03	0,04	W0=34		689	315	20	270	Muy buena resistencia a la corrosión al ácido clorhídrico hirviendo y al gas clorhídrico húmedo.
Incoloy 800	1.4876	0,1	30-34	19-22	Resto			<=0,5			<=1,0	<=1,5	0,03				515	205	30	220	Buena dureza y excelente resistencia a la oxidación y a la carburación. Su estructura se mantiene estable durante la exposición a altas temperaturas.
Inconel 625	2.4856	0,1	Resto	20-23	Max 5,0	<=0,40	8-10		<=1,0	<=0,40	<=0,5	<=0,5	<=015		Nb +Ta 3,15 4,15		827	415	30	190	Alta resistencia y dureza en el rango de temperaturas criogénicas d 2000º F (1093ºC) que sederiva en gran parte por los efectos de la solución sólida de los metales refractarios, molibdeno y en una matiz de cromo-níquel.
UNS S32750 Super Duplex	1.4410	0,03	6-8	24-26			3-5	<=0,5			<=0,8	<=1,2	<=0,02	<=0,035			800	550	15	310	Alta resistencia a la corrosión por picaduras y grietas.
UNS S32760 Super Duplex	1.4501	0,05	6-8	24-26			3-4	0,5-1			<=1,0	<=1,0	<=0,01	<=0,03		W 0,5-1 40 min	750-895	550	25	270	Alta resistencia al agrietamiento corrosivo por exposición a cloruros.
UNS S31803 Duplex	1.4462	0,03	4,5 - 6,5	21-23			2,5 - 3,5				<=1,0	<=2,0	<=0,02	<=0,03			620	450	25	290	Combina la resistencia de base de los demás comunes aceros inoxidables austeniticos con la mayor resistencia a la corrosión.